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Abstract
This paper demonstrates that model-based reinforcement learning (model-based RL) is a suitable approach
for the task of analogical reasoning. We hypothesize that model-based RL can solve analogical reasoning
tasks more efficiently through the creation of internal models. To test this, we compared DreamerV3, a
model-based RL method, with Proximal Policy Optimization, a model-free RL method, on the Abstraction
and Reasoning Corpus (ARC) tasks. Our results indicate that model-based RL not only outperforms
model-free RL in learning and generalizing from single tasks but also shows significant advantages in
reasoning across similar tasks.
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1. Introduction

The Abstraction and Reasoning Corpus (ARC) is known as a benchmark for evaluating abstrac-
tion and reasoning abilities [1]. Examples of ARC tasks can be seen in Fig. 1. To solve an ARC
task, one needs the ability to abstract a common rule among given demos and apply this rule
to a new test input grid to infer the corresponding grid [2]. Additionally, to solve untrained
tasks, one must have the ability to discover various knowledge during the learning process and
selectively apply this knowledge in the task-solving process [2].

This study interprets the two abilities required by ARC not as separate skills but as one
concept of analogical reasoning. Analogical reasoning refers to the process of understanding
new situations or solving problems based on existing knowledge that can be applied to different
contexts or problems [3]. First, the process of solving an ARC task can be seen as solving a new
problem (test input grid) based on the transformations from input grids to output grids in each
demo (existing knowledge), which exactly fits the definition described above. Second, for a model
trained on various ARC tasks to solve a new ARC task, it must understand the demos of the new
ARC task (new situations) based on the solution processes (existing knowledge) applicable to
the training tasks (different problems) and solve the task, which also aligns with the concept of
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Demos
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3x3 Diagonal Flip 3x3 CCW RotateNxN Diagonal Flip

? ? ?

Figure 1: Each ARC task includes several demos and a test input. The objective is to identify the grid
corresponding to the test input by applying a common transformation rule found across all demos.

analogical reasoning. Third, since the evaluation tasks in ARC are typically more complex and
challenging than the training tasks [4], the ability to infer new problem-solving processes based
on learned knowledge through analogical reasoning can enhance the performance on ARC.

In this study, noting the critical importance of analogical reasoning capabilities in solving
ARC, we conducted reinforcement learning (RL) for training ARC tasks. Learning ARC with RL
can offer the following potential benefits from an analogical reasoning perspective. First, RL can
enhance its learning strategies through reward-based learning. In the process of learning ARC
tasks, RL agents learn to maximize rewards across various tasks, thereby developing analogical
reasoning capabilities. Second, RL can learn policies that effectively operate in new, yet similar
environments based on experience. During the learning of various ARC tasks, RL agents can
learn to apply rules learned in one scenario to another, a key element of analogical reasoning.
Third, RL allows agents to produce their own data, enabling effective learning even without
high-quality given data. In tasks like ARC, where data may be limited, RL agents can quickly
infer patterns from a few demos and learn to apply these to the new input.

This study compared model-based RL and model-free RL to evaluate the efficiency of ac-
quiring analogical reasoning abilities. The key difference between these two methodologies
lies in the presence or absence of an internal environmental model. Model-based RL builds an
internal model of the environment based on the agent’s experiences and learns policies through
predictable scenarios, which has the potential to significantly improve decision-making in
complex situations. On the other hand, model-free RL learns to optimize rewards through direct
interaction with the environment, allowing for the development of effective action policies
without constructing an environmental model.

This study hypothesized that the internal model of model-based RL could aid in analogical
reasoning. To test this hypothesis, we observed the learning processes of ARC tasks using
DreamerV3 [5], a representative model-based RL algorithm, and Proximal Policy Optimization
(PPO) [6], a general model-free RL algorithm, demonstrating the potential for RL agents to
acquire analogical reasoning. Additionally, we evaluated the performance and learning efficiency
of both algorithms by fine-tuning them on tasks similar to the pre-trained tasks and comparing
the analogical reasoning capabilities they acquired.
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2. Model-Based RL and Model-Free RL

RL has two main categories: model-based RL and model-free RL. Before conducting experiments
to compare these categories from the perspective of abstraction reasoning, this paper briefly
reviews the characteristics of each category and compares the algorithms that will be used in
this experiment.

2.1. Model-Based RL

Model-based RL builds an internal model of the environment to predict various possibilities
and establish more efficient policies based on these predictions. In problems requiring abstract
thinking and pattern recognition like ARC, the model-based RL approach provides the ability
to generalize to new situations that the agent has not experienced through its internal model.
Representative algorithms utilizing the model-based RL approach include Dyna-Q [7], I2A [8],
MBMF [9], and World Model [10]. Also, AlphaZero [11], which successfully surpassed human
performance in board games such as Go, Chess, and Shogi based on Monte Carlo Tree Search
(MCTS), is the most well-known. Recently, DreamerV3 [12], based on the World Model, has
been the subject of extensive research.

A key feature of DreamerV3 is its ability to extract important features from input data and
convert these into a latent representation, which is then used to learn a predictive model of
the environment’s dynamics. This model functions by taking the current state and actions as
inputs and predicting the next state’s representation and rewards. This approach allows for the
simulation of future scenarios and the evaluation of various scenarios. In summary, DreamerV3
operates by repeating the following three processes: 1) collect data based on a random policy or
the current policy, 2) update the agent’s model based on the collected data, and 3) generate and
evaluate virtual future scenarios using the updated model to improve the policy.

2.2. Model-Free RL

Model-free RL operates directly through interactions with the external environment, basing its
action policies on reward information. This methodology utilizes only the agent’s experiences
without prior modeling of the environment, making it relatively simple to implement and fast
to execute. However, in complex reasoning tasks like ARC, the model-free RL approach can be
somewhat limited. Specifically, it cannot generalize in continuous or dynamic situations and
has limitations in quickly learning changing patterns. These characteristics could constrain
the flexible reasoning and rapid adaptation required in ARC. Representative algorithms of
model-free RL include DQN [13], PPO [14], and SAC [15].

Among these, the Proximal Policy Optimization (PPO) algorithm is one of the most commonly
used algorithms in RL, based on the policy gradient method. PPO is designed to achieve stable
and efficient learning even in complex environments. Its process can be summarized similarly
to DreamerV3 in the following two steps: 1) perform actions in the environment based on the
current policy to collect data, and 2) incrementally improve the policy using the policy gradient
technique based on the collected data.
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3. Experiments

We conducted an experiment comparing the ARC task learning of DreamerV3 and PPO, which
are representative algorithms of model-based RL and model-free RL, respectively, to demonstrate
the differences in analogical reasoning capabilities between these methodologies. Through this
experiment, we aimed to answer the following research questions (RQs):

RQ1. Can Model-Based RL Learn a Single Task? (𝒜 → 𝒜)
RQ2. Can Model-Based RL Reason Tasks Similar to Pre-Trained Task? (𝒜 → 𝒜′)
RQ3. Can Model-Based RL Reason Sub-Tasks of Pre-Trained Task? (𝒜ℬ → 𝒜)
RQ4. Can Model-Based RL Learn Multiple Tasks Simultaneously? (𝒜,ℬ → 𝒜)
RQ5. Can Model-Based RL Reason Merged-Tasks of Pre-Trained Tasks? (𝒜,ℬ → 𝒜ℬ)

We scope our paper to provide answers on RQ1 and RQ2. By addressing RQ1 and RQ2 through
experiments, we aim to demonstrate the abilities of model-based RL in efficiently learning and
applying knowledge across similar tasks. The following descriptions are the common setting of
every experiment.

Action The vast action space of ARC is one of the biggest obstacles to the RL [2]. According
to the ARCLE framework [16], action is defined as a combination of operation and selection;
where operation means the type of action to be performed, and selection determines grids to
which these actions are applied. We force strict restrictions on these operations and selections to
weaken the challenge posed by the vast action space. In experiments, RL agents can select only
five operations: Rotate90, Rotate270, FlipH, FlipV, and Submit [16], and selections are always
fixed as the entire grid. These limitations influenced the selection of tasks.

Task We found tasks from among the 400 training tasks that could be solved with the restricted
operations and selections of actions, and 7 tasks satisfied this condition. Among these tasks, we
selected 4 tasks for our experiment as shown in Fig. 1. First, we selected tasks that need diagonal
flipping on a 3×3 grid or 𝑁×𝑁 grids. These tasks need the right combination of actions (rotate
and flip) before submission. Thus, we thought these tasks were good for measuring analogical
reasoning ability. Next, we chose tasks that need to rotate a 3× 3 grid and flip horizontally on
𝑁 ×𝑁 grids. These tasks need only one action except submit, so analogical reasoning ability
are not necessary for agents.

Reward We designed the reward based on a sparse reward such that an agent gets a reward of
1000 if it does the submit action and the state matches the correct grid. Additionally, even if the
submit action is not executed, reaching the correct grid grants an extra reward of 1. Although
sparse rewards can present challenges in learning tasks with a wide search space, we overcame
these difficulties through simple tasks and restricted action spaces. Furthermore, by giving a
small reward for just finding the correct grid, the RL agent can learn the importance of achieving
the goal state, and by offering a large reward for the submit action, we prevented the agent
from repeatedly reaching the correct grid without submitting in a single episode.
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Metric In all experiments, we measured the data efficiency of learning through the accuracy
relative to the number of environment steps used during training. We decided to use environment
steps to ensure consistency with the experimental settings of DreamerV3 [12], as we wanted to
monitor data efficiency throughout the learning process. Additionally, we employed the pass@3
method used in ARC to measure accuracy [2]. Pass@3 grants three submission opportunities
per episode, and an episode is considered successful if the correct answer is found within three
attempts. If three incorrect submissions are made or the predetermined episode length (50) is
exceeded, the attempt is judged unsuccessful.

Training All tasks used in the experiments were trained using the RL environment for
ARC, ARCLE [16]. Each task was originally composed of a few demos and one test input;
however, there was a concern that this could lead to overfitting during the learning process.
Therefore, we augmented the training with 1,000 demos and used an additional 100 test inputs
for evaluating the model. Furthermore, when training a single task, the agent was trained over
100,000 environment steps, whereas for fine-tuning a new task on a pre-trained model, the
agent was trained for 50,000 environment steps.

3.1. Can Model-Based RL Learn a Single Task? (𝒜 → 𝒜)

(a) 3× 3 Diagonal Flip (b) 𝑁 ×𝑁 Diagonal Flip

(c) 3× 3 CCW Rotate (d) 𝑁 ×𝑁 Horizontal Flip

Figure 2: Performance of agents on four single ARC tasks with different RL algorithms. The above two
results show that the model-based RL agent learned better on analogical reasoning tasks. The below two
results show that the model-free RL agent could be better on simple tasks. Additionally, an interesting
common result was shown in the learning curve of model-based RL: there always occurs an interval in
the middle of learning where accuracy drops to 0. We argue that this interval is where model-based RL
learns concepts for analogical reasoning.
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The first experiment focused on a single ARC task requiring analogical reasoning, where
the objective was to learn the common rules from given demo pairs and apply these rules
effectively to a test input. This experiment involved training on four ARC tasks, each illustrated
in Fig. 1, using the DreamerV3 and PPO algorithms. Tasks requiring multiple actions to solve,
such as Diagonal Flipping, demand analogical reasoning, whereas tasks that can be solved with
a single action, such as CCW Rotation and Horizontal Flipping, are less complex. DreamerV3,
a model-based RL algorithm, exhibited superior performance in Diagonal Flip tasks, which
involve more complex reasoning. In contrast, PPO, recognized for its stable learning capabilities,
performed comparably or even better in simpler tasks.

It’s noteworthy that DreamerV3 achieved 100% performance on uniformly sized 3× 3 tasks
but only managed about 40% on tasks with varying sizes. Conversely, PPO’s performance
remained consistent regardless of grid size and was influenced solely by task difficulty. This
suggests a performance drop in DreamerV3 during the encoding processes.

A common interval of zero performance was observed in DreamerV3’s training across various
tasks, followed by rapid performance improvement. This pattern suggests that DreamerV3 is
not merely learning simple problem patterns but is developing a deeper understanding of
concepts essential for analogical reasoning. Initially, DreamerV3 demonstrated about 40%
effectiveness due to learning straightforward patterns. Later, the agent recognized that this
approach was insufficient for fully solving tasks, prompting it to explore and learn from various
trials. Consequently, DreamerV3 displayed significant performance improvements in later
learning stages, outperforming earlier results. These observations imply that DreamerV3’s latent
representations capture conceptual content that enhances learning efficiency and illustrates the
potential for analogical reasoning within model-based RL frameworks.

3.2. Can Model-Based RL Reason Tasks Similar to Pre-Trained Task? (𝒜 → 𝒜′)

(a) 3× 3 to 𝑁 ×𝑁 Diagonal Flip (b) 𝑁 ×𝑁 to 3× 3 Diagonal Flip

Figure 3: Comparing the performance of agents between DreamerV3 and PPO on two single ARC
tasks with a pre-trained model about a similar task. Understandably, PPO did not gain any benefit
from fine-tuning due to the low performance of the pre-trained model. In contrast, DreamerV3 showed
very high performance when adapting from a pre-trained model that had performed well in the 3× 3
Diagonal Flip task. However, when utilizing a pre-trained model with poor performance, DreamerV3
also displayed lower initial learning efficiency than when no pre-trained model was used. Lastly, at the
end of the experiment where fine-tuning was successful, a sudden drop in performance occurred, which
is presumed to be the same phenomenon as the interval in previous experiments.
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The second experiment evaluated the learning efficiency of an agent when facing a task
similar to one it had previously trained on. For instance, in Fig. 3a, we observed the performance
of diagonal flip tasks across various grid sizes for agents pre-trained on a 3× 3 diagonal flip
task. Conversely, in Fig. 3b, we reversed the roles of the pre-trained and adaptation tasks to
evaluate both agents’ performances.

In both scenarios, PPO consistently displayed a performance level of around 20%. This
outcome was anticipated, considering that the agent’s performance on pre-trained tasks had
similarly been around 20%, as evidenced in previous experiments (Fig. 2a and Fig. 2b). The
insufficient performance of the pre-trained model likely inhibited any positive influence on the
adaptation process, resulting in no notable performance gains compared to the non-pre-trained
scenario.

An interesting finding from the DreamerV3 results was the direct impact of the pre-trained
model’s performance on adaptation. For example, while the model without pre-training achieved
about 40% performance on the same task, the pre-trained model approached 100%, mirroring the
3× 3 Diagonal Flip task’s success previously encountered. This pattern was further supported
by the performance contrasts observed between Fig. 2a and Fig. 3b. Here, a task that once
achieved 100% performance dropped to around 40% after pre-training, reflecting the outcomes
seen with the 𝑁 ×𝑁 Diagonal Flip tasks. These outcomes illustrate that DreamerV3 tailored
its problem-solving strategies based on insights drawn from pre-trained tasks, suggesting that
better results could have been obtained if adaptation in Fig. 3b had also been initiated from a
higher-performing pre-trained model.

Towards the latter part of training in Fig. 3a, a sudden decline in performance was noted.
While the exact cause of this drop cannot be definitively established, we hypothesize that it
might be due to the same type of interval observed in previous results (Fig. 2). Although the
experiment’s step limit prevented precise verification, it seems probable that the DreamerV3
agent was undergoing an interval similar to earlier tests, attempting to learn new concepts.
Further experimentation beyond 50,000 steps and additional theoretical analysis are required to
explore this phenomenon more deeply, which could further substantiate DreamerV3’s capability
for analogical reasoning.

4. Discussion

Restriction of Action Space Our study examined the analogical reasoning abilities of
reinforcement learning (RL) algorithms and their ability to apply learned concepts. In the
ARCLE, an agent’s actions consist of operation and selection, requiring the policy to adeptly
handle both components. However, the challenge of learning the selection process significantly
increases the complexity of the tasks. To mitigate this, we simplified the action space by
providing selections through an oracle in this experiment. This adjustment allowed the agents
to focus more on mastering operations without the added difficulty of selection, streamlining the
learning process. Future research should explore the possibility of incorporating the selection
process more autonomously within the reasoning tasks. This would test the agent’s ability
to handle the complete process of decision-making, potentially leading to more analogical
reasoning ability for agents.
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Restriction of Tasks This paper focused on learning simple tasks involving just one or two
operations, such as diagonal flipping tasks, a Rotating task, and a horizontal flipping task. Future
research should explore additional challenges such as the Rotate and the Flip task, which could
provide valuable insights into the model’s ability to generalize and reason about sub-components
of learned tasks. It is also crucial to assess the efficiency of learning multiple related actions
(multi-tasking) simultaneously. To overcome this challenge, previously learned knowledge must
be retained while new knowledge is acquired. In other words, it is essential to be robust against
catastrophic forgetting. Should such an agent be developed, two types of experiments will be
essential: 1) The agent should be trained on a large and diverse set of tasks to verify the absence
of catastrophic forgetting. 2) The agent should be trained on a wide range of tasks with varying
difficulties, followed by an evaluation of its capability to adapt to untrained tasks.

Applying Meta-Learning In addressing the ARC tasks, the ability to apply learned concepts
to entirely new contexts is essential. Meta-learning, or ‘learning to learn,’ can be considered to
adapt quickly to new tasks. Future studies should focus on developing meta-learning frameworks
that can efficiently abstract underlying task structures, allowing for rapid generalization across
varying problem settings. A deeper exploration into meta-learning could utilize frameworks such
as Model-Agnostic Meta-Learning (MAML) [17] which has shown promise in various domains.
Implementing and refining meta-learning techniques like MAML could lead to breakthroughs
in developing AI models that can learn not only untrained tasks more efficiently but also their
knowledge to solve untrained tasks.

Applying Transfer Learning Transfer learning can significantly enhance the model’s ability
to utilize knowledge acquired in one context and apply it to different yet related tasks. This
process often involves the use of deep neural networks, specifically their ability to approximate
and adapt policies through layers that capture generalizable features, which are crucial for the
successful transfer of knowledge across tasks within the same domain or between different
domains [18]. Conducting such studies would provide deeper insights into the flexible applica-
tion of acquired knowledge, a critical aspect of analogical reasoning. These investigations will
pave the way for creating adaptable and efficient learning systems that thrive in dynamically
changing environments.

Theoretical Analysis of Model-Based RL Finally, our findings indicate that model-based
RL can facilitate more efficient learning in analogical reasoning tasks compared to model-free
approaches. The inherent capabilities of model-based methods to infer and generalize from
limited data were particularly beneficial. However, our study also highlights the need for further
investigation into the specific mechanisms through which these models store and retrieve
task-specific patterns. A deeper understanding of these processes could inform the development
of more robust model-based systems, enhancing their capability to handle a wider array of
complex reasoning tasks.
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5. Related Works

The winner of the ARC Challenge [19] utilized a total of 142 domain-specific languages (DSLs)
to combine various transformed images [20]. The ARC Challenge later expanded into AR-
Cathon [21], and the ARCathon 2022 winner’s approach involved exploring using 166 DSLs
that included more complex and diverse features [22]. This attempted to challenge the broad
generalization of DSLs; however, it also introduced limitations due to the inclusion of very
infrequently used features, making the DSLs too complex. Compared to humans can solve about
80% of ARC evaluation tasks [23], DSL-based search algorithms have shown performances
around 30-40% [4, 21]. However, these approaches, being fundamentally simple search-based,
have inherent weaknesses in complex tasks and are prone to overfitting to specific tasks defined
by artificially designed DSLs, making them difficult to apply or generalize to other tasks. This
fundamental limitation may render them unsuitable for analogical reasoning.

Subsequent studies have attempted to solve tasks using neural networks. Some research efforts
were based on program synthesis, progressively recognizing increasingly complex patterns,
while other studies have tried to learn the complexities of ARC through the computational
abilities of Large Language Models (LLMs). However, studies without DSLs have shown relatively
low performance. Even the most recent studies based on program synthesis [24] or LLMs [25]
have only achieved performances of 6.5–6.75% on untrained tasks [26]. Recently, there was
interesting research utilizing human-solving processes [27], but this study did not contain the
performance on untrained tasks. The low performance of these studies is attributed to the
following reasons: In the case of program synthesis, the method of combining all possessed
knowledge to acquire new knowledge leads to poor learning efficiency [28], and LLMs are
known to be weak in incremental reasoning [29]. These limitations can be particularly harmful
in evaluation tasks, which are known to be comparatively more complex and difficult than
training tasks [4]. Additionally, the research utilizing human-solving processes has a risk to
untrained tasks due to their reliance on offline learning from given solutions [30].

Ensemble-based research that combines the previous approaches has also been announced [4,
26]. These methods were expected to compensate for the weaknesses of existing approaches
through the ensemble. An ensemble-based study combining program synthesis and LLMs
showed a performance of 14.75% [26], and the approach of the ARCathon 2023 winner exhibited
about 33% performance, significantly surpassing previous studies. However, the performance of
ensemble-based research that combined DSL, program synthesis, and LLMs was only 40.25% [4],
which is just 0.25% higher than the performance of a baseline that used only DSL. This result
means that just one more task out of 400 evaluation tasks was solved. Ultimately, the experimen-
tal results of these ensemble-based studies further highlighted the limitation that the presence
of program synthesis and LLMs does not significantly impact performance compared to DSL.

Meanwhile, there are some attempts to apply reinforcement learning (RL) algorithms in a
limited way based on program synthesis and LLMs methods [26, 31]. The limited application of
RL algorithms can be attributed to factors such as the absence of appropriate rewards, high-
dimensional complex states, and extensive search spaces, but fundamentally, the absence of
an environment for ARC was the main reason. However, an environment for training ARC
tasks [16] has been developed recently. Furthermore, this research demonstrated successful
training of an ARC task using PPO, suggesting the potential applicability of various RL models.
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6. Conclusion

In this paper, we compared analogical reasoning abilities between model-based and model-free
RL, using the ARC to demonstrate the effectiveness of model-based RL. This approach has
shown superior learning efficiency and adaptability in tasks compared to model-free methods
like PPO. Specifically, DreamerV3 outperformed in tasks similar to those it had previously
solved, displaying a remarkable ability to generalize across various task dimensions.

The observed performance dips followed by rapid recoveries during DreamerV3’s training are
thought to represent periods of conceptual consolidation. These intervals align with theoretical
expectations of analogical reasoning in AI systems and highlight DreamerV3’s potential to
manage complex cognitive tasks. Future research should further explore these learning dynamics
to better understand the mechanisms that enable such advanced reasoning. This will help
enhance RL agents capable of analogical reasoning and adaptation in dynamic environments,
reducing the gap between the reasoning ability of humans and RL agents.
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